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Noise and Transfer Properties of Harmonically
Synchronized Oscillators

REINHARD KNOCHEL anp KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract—A theoretical model of a harmonically synchronized oscillator
is developed. Using this model output power, stability conditions, noise,
and transfer properties of a harmonic frequency divider are calculated and
discussed.

I. INTRODUCTION

ARMONIC synchronization of a free-running

oscillator is a powerful means for performing
frequency division in the microwave region. A possible
application of such a divider circuit lies in an indirect
amplification system for FM signals, which consists of a
frequency divider, a power amplifier in the lower giga-
hertz region, and a final frequency multiplier.

This work is devoted to an analysis of harmonically
synchronized oscillators. Such a synchronization is based
on a nonlinear interaction process of synchronizing and
synchronized signals in the active device. Hence, a lin-
earized theory as that of Kurokawa [1] for noise in funda-
mentally synchronized oscillators cannot be applied here.
The nonlinearity must fully be accounted for instead.

Our theory is a phenomenological one. The shape of the
nonlinearity is arbitrary; it may be single valued or double
valued as for Gunn elements, N shaped, or S shaped. The
nonlinearity is assumed to be incorporated into a one-port
network (representing a negative resistance device),
although the theory can be modified to include a two-port
network, likewise. The mathematical treatment of the
problem consists of two parts. First, the RF carrier signals
will be calculated by using the describing function method
[2]. The nonlinearity is then replaced by a periodically
driven network, which allows a linear analysis for the
small sideband noise or modulation signals [3].

II. HARMONIC SYNCHRONIZATION

It is the aim of this contribution to develop a theory
which leads to a tractable description of the performance
of harmonically synchronized oscillators. This oscillator
model shall complete the linearized model of Kurokawa
with respect to including inherently nonlinear effects as
harmonic (or subharmonic) synchronization. It is based
on a simple equivalent circuit, which is shown in Fig. 1.
The resonance structure is approximated by a parallel LC
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Fig. 1. Equivalent circuit of an harmonically synchronized oscillator.

circuit with load conductance G,; N is the active device,
and v, is a synchronizing voltage source. The active device
shall be described by a cubic (van der Pol) current—volt-
age characteristic, relating the normalized device current y
to the normalized device voltage x via

y=—x+ax’+x’=f(x). H
The normalizing quantities have been chosen according to
[4]. “a” is a dimensionless parameter.

The equivalent circuit of the synchronized oscillator
may in fact be as general as necessary. It may, for
example, even contain nonreciprocal elements. Only two
assumptions have to be made in the analysis.

1) The nonlinear characteristic is known either analyti-
cally or by numerical approximation.

2) The filtering effect of the linear part of the network
is such that the voltage waveform across the active device
can be found.

The oscillation amplitude can then be calculated by
using the describing function method [2]. The voltage
waveform being known, the current waveform is calcu-
lated by Fourier analysis using (1). Then the fundamental
components of current and voltage are related by the
so-called describing function s, which is the effective
admittance of the nonlinear device. By setting

)
with m as an integer, the normalized effective admittance
n can be calculated. It depends on X, %; and ¢ for m=2
and m=3. Synchronization with higher harmonics cannot
be described by a cubic nonlinearity because n turns out

to be purely real in these cases. This means that the
oscillation frequency cannot be tuned away from the

x =%, cos (wt+ @)+ X, cos (mwt)
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natural frequency of the LC circuit; synchronization is
not possible. In order to treat synchronization with m >3,
higher order terms in the characteristic (1) have to be
retained.

The describing function is defined via

n= WLI S 1) cos (ot dan). (3)

Inserting (2) yields
n(m=2)=—1+afe Y7 +3%2+3 %} (4a)
n(m=3)=—1+382+382+3% %e Y%  (4b)
n(m>3)=—1+322+ 252 (4c)

The oscillation condition is obtained by applying
Kirchhoff’s voltage law to the equivalent circuit.

n+g,(1+/x)=0 (5)
with
—Q=1/) Q= a=1/VIC r=u/e

g, is the normalized load conductance.

Solving (5) for X;=0 yields the free-running voltage
amplitude %, and »=1. In the case of a cubic nonlinearity
(a=0), the output power is maximum for g, =1/2 and
%2=2/3. This amplitude will be used for a further nor-
malization.

%3 %2

=33 %=23

In the case of a nonzero injection voltage, the oscillation
condition can directly be solved for X,.

X (6)

X1=1—2X,¢\/8aX,./3—K2 , form=2 (7a)
X, =1-3X,£yX,~7X?/4—«*>,  form=3. (7b)

In either case the output phase is given by
tan (mep)=«/(1— X,—-2X). ®)

From (8), the group delay distortion can be derived by
differentiating the phase with respect to the frequency.

III.

Equations (7) and (8) are valid provided that the oscilla-
tor is locked to the injection signal. To obtain stability
conditions, the circuit is tested to see if additional injected
perturbation signals of a small amplitude will grow or die
away with time. Unfortunately, a disadvantage of the
describing function method is that it does not allow one to
determine the stable synchronization range [1]. We will
hence describe a new stability criterion which is based on
the conservation of power. The method is based on one of
the most general minimum principles of physics, the
Gaussian principle of the least constraint. Although it has
originally been formulated in analytical mechanics, it can
be transferred to electromagnetic theory. Here the con-

STABILITY
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straint Z turns out to be the first time derivative of the
power P [5].

Z=dP/dt. 9
The Gaussian principle of the least constraint then reads
0Z=09(dP/dt)=0 (10)

1.e., the first variation of the constraint vanishes.

Applying (10) to oscillatory systems yields information
about their stability. To this end the oscillator and the
locking source are surrounded by a boundary surface.
This leads to a closed system whose state is characterized
by a complex power balance equation. Writing the total
power as

P=P,+jP,—Re(P;)—jIm(P))

(11)

with P, the active, P, the reactive, and P, the injected
power, the principle of conservation of energy P=0 yields
the already-known voltage amplitude and phase.

The total power in (11) depends on both the voltage
amplitude and the oscillation frequency. In order to
evaluate (10), we regard a small perturbation of the oper-
ating point. The new state is characterized by a complex
frequency [1] w=w,~—ja. Equation (10) then yields two
relations with 8w,, 8a, and 8%, as variables, which are
combined in order to eliminate dw,. A stability criterion
can be gained from this relation if one takes into account
that an increase in x; must cause an increase in the
damping term e®. Thus the stable synchronization range
can be determined as a function of P, or x,. For further
details, the reader is referred to [6].

In the case of harmonic synchronization, the stability
condition turns out to be rather lengthy. It can be sim-
plified considerably, however, if one follows the guideline
given in {7]. It has been shown there for the case of
fundamental synchronization, that the stable synchroniza-
tion range is a frequency band whose upper and lower
bound is characterized by an infinite slope in the ampli-
tude curves X,(r). Such an equivalence can likewise be
established between the amplitude curves for harmonic
synchronization and the stability condition based on the
Gaussian principle of the least constraint. The stable
synchronization range A» can then be calculated from (7).

Av=2Va %/Q,, form=2 (12a)
Auz%f,/QL\/l—ZI;G,Z/S, form=3. (12b)

The factor X;/Q, corresponds to VP, /Q,, which has
been derived in [1] for fundamentally synchronized oscil-
lators with small injection power.

IV. Noise PERFORMANCE

In order to investigate the noise performance of
harmonically synchronized oscillators, sideband vectors of
small magnitude and stochastic phase are introduced as
perturbations of the carrier signals. The calculation
closely follows the pattern first introduced into oscillator
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theory by Hines [8]. The noise mechanism in the active
device is taken into account by equivalent sideband noise
voltage sources. These sources have to be thought of as
being in series to the locking voltage source v, in Fig. 1.
We are thus capable of describing both intrinsic and
injected noise in a similar way. While the latter is super-
posed on the locking signal (the sidebands are hence
located at mw+Q with @ being the distance to carrier
frequency), the former exists not only close, to the funda-
mental frequency but also close to its harmonics; the
intrinsic noise vectors must be assumed to be located at
iw*+§ with i=1,2,3,- -, This is valid as the spectrum of
the intrinsic noise is white.

The parametric mixing process between the various
noise vectors is described by linear matrix algebra. The
size of the computations is considerably reduced in the
case, that the equivalent circuit of Fig. 1 is analyzed in
conjunction with a cubic nonlinearity. Superposing small
perturbation currents Ay and voltages Ax on the carrier
signals y and x means for (1) that

y+Ay=f(x+Ax), Ay<y Ax<x.

(13)

Equation (13) can be linearized with respect to the noise
signals.

y=f(x)Ax,

where f'(x) is a periodic function of time and may hence
be expanded into a Fourier series. In the case of the cubic
nonlinearity, the Fourier series is finite with coefficients
8, =0 for k >2m+1. The highest pair of sidebands, which
must be taken into account, is hence located at 2mw = .

The scheme for analyzing the equivalent circuit of Fig.
I for the noise signals is the following. At the nonlinear
element, the noise currents at frequencies iw*Q with i=1
to 2m are related to the noise voltages by a matrix
equation with g, being the elements of the conversion
matrix. These equations are completed by Kirchhoff’s
voltage law. The upper and lower sideband voltages at the
fundamental frequency Ax, and Ax, can then be calcu-
lated by superposing the contributions from the various
sideband pairs of noise voltage sources. Finally, one has
to average over the stochastic phases of the noise sources.
The fundamental relations of this procedure are given in
the Appendix.

The AM noise spectrum is calculated from

f(x)=df/dx=—1+2ax+3x* (14)

pam=={Re(Ax, + A)‘1)2> (15a)
and the PM noise spectrum from
¢pm={Im(Ax, + Ax,)2>. (15b)

The brackets denote an average over the independent
phase angles of the noise voltage sources.

AM to PM and PM to AM conversion can be calcu-
lated, when the injected noise is assumed to be either
purely AM or purely PM. In the former case, the pair of
injected sideband sources is given by

Ax,~e™ " Ax, ~e AM  (16)

941

and in the latter by
Ax,~e ™ Ax,~—e"

v is the common stochastic phase.

Simple expressions for the noise spectra can be given
for some special cases. If one takes only the intrinsic noise
close to the fundamental frequency into account, the
output noise is given by

PM. (17)

o N(_Ee_)z
M\ got+ g+ 8

Q0. (18)
&L )2

8ot+8 8

The second expression shows the stabilizing effect of the
synchronizing signal on the PM noise. For %;=0, the
denominator vanishes, because 1) g, is O [4] and 2) n is
80— & as can be proven by integrating (3) by parts. The
denominator then equals the left-hand side of (5). This
gives rise to a sharp PM noise peak, which is considerably
damped even for small injected signals. The AM noise, on
the other hand, is only weakly influenced by the injected
signal. Furthermore, injected AM noise leads to

¢PMz(

2
+ J— —_
g (8 83)(822g02gL) . form=2 (19)
(80t+8)" —8
2
+ —_ —_
- (& g4)(g22gosz) . form=3 (19b)
(8ot8) 2
and injected PM noise to
2
- +go+
bo (& 83)(822g02gL) . form=2 (20a)
(8o+8.) — &
2
- +go+
¢PM’:[(g2 84)(g22802gL) ’ for m=3. (20b)
(80+8) —8;

Equations (19) and (20) are valid for »=1 and 2—0. » is
the normalized oscillation frequency.

V. RESULTS

Some advantageous features of frequency division by
harmonic synchronization are well known. Such a divider
behaves as a power limiter and shows power gain. Fur-
thermore, the magnitude of the stable locking range is
almost as large as that of a fundamentally synchronized
oscillator in the case of m=2. For m=3, half of this value
can be obtained. Comparing with fundamental synchroni-
zation one can state, as a rule of thumb, that 10-dB more
locking power is needed in order to attain equal locking
ranges.

A characteristic feature of harmonic synchronization is
that the locking range reaches a maximum versus the
injection power. This is due to the conversion efficiency,
which depends on the injected signal. A large drive of the
nonlinear device reduces that portion of the injected
signal, which is downconverted to the fundamental.
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Fig. 2. Intrinsic PM sideband noise power versus the injection level for

different noise contributions. m=3, Q; =10, g; =0.5, @/w= 1074 and
a=0. a is for noise at w with v =1; b is for noise at w,iw with v=1; ¢ is
for noise at w with »=1.01; d is for noise at w,iw with »=1.01. i=1 to
2m.

Hence the effective synchronizing signal decreases as does
the locking range. In the case of X;—1, the approximate
formula (12a) is no longer valid. That is why (12a) shows
no maximum for Aw versus X;. _

The maximum locking range has been computed to
amount to 13 percent for m=2 (a=1), 1-dB power gain,
and —1-dB output power compression, and to 4 percent
for m=3 (a=0), 6-dB power gain and 0-dB output power
compression. The loaded Q factor Q; had been set to
Q, =10. One can nevertheless state that a gain of 10 dB
should be possible. In this case, the locking range amounts
to 6 percent for m=2 (a=1) and to 3 percent for m=3
(a=0), (@, =10).

The phase shift across the locking band behaves simi-
larly as for fundamental synchronization (see (8)).

21
K is a function of the injection signal x,. The group delay
is smaller than for fundamental synchronization by a
factor of 1/m. The maximum shift at the borders of the
locking band is = /(2m).

The dependence of the intrinsic noise on the injected
power will be discussed next. As for fundamental synchro-
nization, the PM noise is drastically reduced, if a stable
harmonic signal is injected. This is shown for m=3 in Fig.
2. The normalized PM sideband noise power pp,, has been
drawn versus X;, which is proportional to the injected
power. Here and in the following the spectral density of
the intrinsic noise sources has been set to 1/3-107 '
Increasing X, yields decreasing PM noise, until a mini-
mum has been reached at a relatively large X,. If X; is
increased beyond this point, the PM noise becomes worse.
The explanation is the same as for the existence of a
maximum of the locking range; the stabilizing effect of
the injection signal depends on the conversion efficiency
and hence on the drive of the nonlinear element.

It can be seen further from Fig. 2 that the noise compo-
nents close to the harmonics contribute about as much to

tan(me) = Kx.
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Fig. 3. Intrinsic PM sideband noise power versus the injection level for

different noise contributions. m=2, @, =10, g; =05, @/w= 1074, and
a=0.1. a is for noise at w with y=1: b is for noise at w,iw with »=1; ¢
is for noise at w with »=1.005; 4 is for noise at w,iw withr=1.005. i=1
to 2m.
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Fig. 4. Intrinsic AM sideband noise power versus the injection level
for different noise contributions. m=3, Q; =10, g, =0.5, Q/w=10"%,
and @a=0. a is for noise at w with p=1; b is for noise at w,iw with
v=1; ¢ is for noise at w with »=1.01; 4 is for noise at w,iw with
r=10l.i=1to 2m.

the PM noise as do the fundamental components alone.
(In cases b and d, noise sources at w and iw with i=2 to
i=2m have been taken into account.) This effect is even
more pronounced for m=2 as shown in Fig. 3. The
normalized AM noise power p 4y, has been drawn versus
X, in Fig. 4. Its shape is similar to that of ppp(X)).

The output PM noise due to the PM noise of the
injection signal is shown versus X; in Figs. 5 and 6. (The
spectral densities of the injected noises have been chosen
so that the injected AM noise power' is — 160 dB below
the carrier and the injected PM noise power — 128 dB.

In a 1-Hz bandwidth.
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Fig. 5. PM noise power due to a PM injection signal versus the
injection level. m=3, @, =10, g; =0.5, 2/w=10"% and a=0. a: v=1.
b: v=1.01.
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Fig. 6. PM noise power due to a PM injection signal versus the
injection level. m=2, @, =10, g, =05, @/w=10"% and a=0.1 a:
v=1. b: »=1.005.

This relationship is completely different from the corre-
sponding one for fundamental synchronization, where the
PM noise at the output does not depend on the injection
power [9]. For harmonic synchronization, however, the
PM noise monotonically decreases versus X;. Again the
explanation for this effect lies in the conversion efficiency
which decreases versus X,. Hence the PM noise which is
downconverted from around mw to w must decrease, too.
Combining the results of Figs. 2 and 5 one must suppose
that the total PM noise at the output should have a
minimum versus X;. This effect could indeed be observed
in practice.

An unexpected result was that the PM noise is less for
v#1 than for v=1, i.e., it shows a maximum in the middle
of the stable locking range (see case b in Figs. 5 and 6).
This is due to a very strong PM to AM conversion, which
occurs for r#1 at locking powers less than — 10 dB. Such
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Fig. 7. AM noise power due to an AM injection signal (curves a,b),
AM to PM conversion (curve ¢), and PM to AM conversion (curve d)
versus the injection level. m=3, Q; =10, g, =0.5, Q/w=10"%, and
a=0. a: =1 and b: »=1.01 (p,(AM)). c: »=1.01 (pp(AM)). d:
r=1.01 (pr(PM)).

an enhancement in AM noise may impair the overall
performance of the divider in practice. It has been shown
for m=3 in Fig. 7, curve d. Also shown are the AM noise
due to AM injection and the AM to PM conversion. Both
terms increase very strongly when X; tends to —2.5 dB.
For injected powers, which exceed this margin, the oscilla-
tor cannot be synchronized any longer.

VL

A nonlinear model, which is capable of calculating
noise and transfer properties of harmonically synchro-
nized oscillators, has been developed. For the case where
the active device is described by a van der Pol type
nonlinear characteristic, analytical expressions can be de-
rived for many of the interesting quantities. The model
has been applied to both a frequency divider by a factor
of 2 and a divider by a factor 3. The results show that
harmonically synchronized oscillators differ in many
aspects of their performance from fundamentally synchro-
nized oscillators. This model is hoped to yield a useful
tool for designing harmonic frequency divider circuits.

CONCLUSIONS

VII

The coefficients of the conversion matrix are calculated
from

APPENDIX

8= 5 [ 7(e R d(an)

One obtains:
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3, ..
g,=ax;+ fo(cos 2+ sin 2¢)

8=

| w

go=—1+3 (&1 +1))

g, =ax,(cos @+ sin ¢)

£ 1% (cos @+ sin ®) &=

Hlw

X;

2 gi=ge=0, form=2

. 3 .. .
g,= %if(cos 20+ sin 2¢) + 3 %,X,(cos @ —j sin @)

g;=ax;

3., .
84= 5 %1%,(cos g+ sin ¢)
3,

gs=0 g6=zxi2’

for m=3.

The matrix equation, which relates the upper and lower sideband voltages across the nonlinear device Ax,; and Axy; at
frequencies iw+Q with i=1 to i=2m to the currents Ay,, and Ay,,, reads

Ay, g% & & & £ &
Ay, g & & & & &
Ay gt 8F & 8 & &
Ay, g8 8 8 8 8 &
Ayl g5 & g8 8 & &
Ayp 8 & 81 8 & 8o
Ayx| =gt gf & 8F s &
Ayyy 81 8 8 8 8 81
Ayt gf g% 87 8 & O
Ay;s g 8 8 8 0 &
Ay g¥ g& g 0 g O
Ay g8 8 0 g 0 g
Ay gt 0 g 0 g O

&3
84
43
8s
4}
&
8o
0
gt
0
87
0

g3

gf 8 8% & 8 & Axy
gf 8 87 8 & O Axpy
g¥ 8 8 8 0 & Axy
gy g & 0 g O Axp,
gt & 0 g 0 g Axp
gt 0 g 0 g O Axs
0 g 0 g 0 g Axy
g8 0 g 0 g O Ax,4
0 g 0 g 0 g Axyy
g 0 g 0 gf O Axs
0 gt 0 g 0 g Axs
g 0 g 0 g O Axg
0 g8 0 gf 0 g Axgs

Ay, and Ax, are sideband vectors at frequency £ denoting noise in the bias circuit.
In writing down Kirchhoff’s voltage law for the phasors at the various sideband frequencies, one has to take into
account that the parallel circuit presents a finite admittance only at frequencies w =+ {2.

(11
2]

3]
[4]
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