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Noise and Transfer Properties of Harmonically
Synchronized Oscillators

REINHARD KNOCHEL AND KLAUS

Abstract—A theoretical model of a harmonically synchronized oscillator

is developed. Using this model output power, stahitfty conditions, noise,

and transfer properties of a harmonic frequency divider are calculated and

discussed.

I. INTRODUCTION

H ARMONIC synchronization of a free-running

oscillator is a powerful means for performing

frequency division in the microwave region. A possible

application of such a divider circuit lies in an indirect

amplification system for FM signals, which consists of a

frequency divider, a power amplifier in the lower giga-

hertz region, and a final frequency multiplier.

This work is devoted to an analysis of harmonically

synchronized oscillators. Such a synchronization is based

on a nonlinear interaction process of synchronizing and

synchronized signals in the active device. Hence, a lin-

earized theory as that of Kurokawa [1] for noise in funda-

mentally synchronized oscillators cannot be applied here.

The nonlinearity must fully be accounted for instead.

Our theory is a phenomenological one. The shape of the

nonlinearity is arbitrary; it may be single valued or double

valued as for Gunn elements, N shaped, or S shaped. The

nonlinearity is assumed to be incorporated into a one-port

network (representing a negative resistance device),

although the theory can be modified to include a two-port

network, likewise. The mathematical treatment of the

problem consists of two parts. First, the RF carrier signals

will be calculated by using the describing function method

[2]. The nonlinearity is then replaced by a periodically

driven network, which allows a linear analysis for the

small sideband noise or modulation signals [3].

II. HARMONIC SYNCHRONIZATION

It is the aim of this contribution to develop a theory

which leads to a tractable description of the performance

of harmonically synchronized oscillators. This oscillator

model shall complete the linearized model of Kurokawa

with respect to including inherently nonlinear effects as

harmonic (or subharmonic) synchronization. It is based

on a simple equivalent circuit, which is shown in Fig. 1.

The resonance structure is approximated by a parallel LC
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Fig. 1. Equivalent circuit of an harmonically synchronized oscillator.

circuit with load conductance G~; N is the active device,

and o, is a synchronizing voltage source. The active device

shall be described by a cubic (van der Pol) current–volt-

age characteristic, relating the normalized device current y

to the normalized device voltage x via

y = – X+ UX*+ Xs=f(x). (1)

The normalizing quantities have been chosen according to

[4]. “a” is a dimensionless parameter.

The equivalent circuit of the synchronized oscillator

may in fact be as general as necessary. It may, for

example, even contain nonreciprocal elements. Only two

assumptions have to be made in the analysis.

1) The nonlinear characteristic is known either analyti-

cally or by numerical approximation.

2) The filtering effect of the linear part of the network

is such that the voltage waveform across the active device

can be found.

The oscillation amplitude can then be calculated by

using the describing function method [2]. The voltage

waveform being known, the current waveform is calcu-

lated by Fourier analysis using (1). Then the fundamental

components of current and voltage are related by the

so-called describing function n, which is the effective

admittance of the nonlinear device. By setting

X=.i, Cos (d+(p) +.i, Cos (mot) (2)

with m as an integer, the normalized effective admittance

n can be calculated. It depends on 2,, ii and q for m = 2

and m =3. Synchronization with higher harmonics cannot

be described by a cubic nonlinearity because n turns out

to be purely real in these cases. This means that the

oscillation frequency cannot be tuned away from the
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natural frequency of the LC circuit; synchronization is

not possible. In order to treat synchronization with m >3,

higher order terms in the characteristic (1) have to be

retained.

The describing function is defined via

.=& J”f(x)cos(@t)d(@t). (3)
—r

Inserting (2) yields

n(m=2)= —l+a~ie–2~~ +~~~+~f,2 (4a)

n(m=3)=—l+~i~+~f,2+~21jie – 3jp (4b)

n(m>3)= – l+~if+~i,2. (4C)

The oscillation condition is obtained by applying

Kirchhoff’s voltage law to the equivalent circuit.

n+g~(l+jK)=() (5)

with

(.JOc
K= QL(v– l/v) Q~= G= (.Oo= l/m V=@/@o.

g~ is the normalized load conductance.
Solving (5) for ~i = O yields the free-running voltage

amplitude .$l and v = 1. In the case of a cubic nonlinearity

(a= O), the output power is maximum for g.= 1/2 and

2;= 2/3. This amplitude will be used for a further nor-

malization.

-2 .2x,

“ = 273 “ = 2/3 “
(6)

In the case of a nonzero injection voltage, the oscillation

condition can directly be solved for Xl.

X1=1–2X1+-, form=2 (7a)

iX1=l–+Xi~ X,–7X~/4– K2 , for m= 3. (7b)

In either case the output phase is given by

tan (mcf) = K/(1 –Xl –2X,). (8)

From (8), the group delay distortion can be derived by

differentiating the phase with respect to the frequency.

III. STABILITY

Equations (7) and (8) are valid provided that the oscilla-
tor is locked to the injection signal. To obtain stability

conditions, the circuit is tested to see if additional injected

perturbation signals of a small amplitude will grow or die

away with time. Unfortunately, a disadvantage of the

describing function method is that it does not allow one to

determine the stable synchronization range [1]. We will

hence describe a new stability criterion which is based on

the conservation of power. The method is based on one of

the most general minimum principles of physics, the

Gaussian principle of the least constraint. Although it has

originally been formulated in analytical mechanics, it can

be transferred to electromagnetic theory. Here the con-

straint Z turns out to be the first time derivative of the

power P [5].

Z=dP/dt. (9)

The Gaussian principle of the least constraint then reads

t)Z= ~(dP/df) =0 (lo)

i.e., the first variation of the constraint vanishes.

Applying (10) to oscillatory systems yields information

about their stability. To this end the oscillator and the

locking source are surrounded by a boundary surface.

This leads to a closed system whose state is characterized

by a complex power balance equation. Writing the total

power as

P= Pa +jPr – Re(Pi) –j Im(Pi) (11)

with P. the active, P, the reactive, and P, the injected

power, the principle of conservation of energy P = O yields

the already-known voltage amplitude and phase.

The total power in (11) depends on both the voltage

amplitude and the oscillation frequency. In order to

evaluate (10), we regard a small perturbation of the oper-

ating point. The new state is characterized by a complex

frequency [1] a= u, –jx. Equation (10) then yields two

relations with &+, 8a, and M, as variables, which are

combined in order to eliminate tk+. A stability criterion

can be gained from this relation if one takes into account

that an increase in xl must cause an increase in the

damping term eat. Thus the stable synchronization range

can be determined as a function of Pi or x,. For further

details, the reader is referred to [6].

In the case of harmonic synchronization, the stability

condition turns out to be rather lengthy. It can be sim-

plified considerably, however, if one follows the guideline

given in [7]. It has been shown there for the case of

fundamental synchronization, that the stable synchroniza-

tion range is a frequency band whose upper and lower

bound is characterized by an infinite slope in the ampli-

tude curves X1(V). Such an equivalence can likewise be

established between the amplitude curves for harmonic

synchronization and the stability condition based on the

Gaussian principle of the least constraint. The stable

synchronization range AV can then be calculated from (7).

Av~21& 2,/QL, form=2 (12a]

Av=+2,/Q~~x, form =3. (12b)

The factor ii/ Q~ corresponds to fi / Q=, which has

been derived in [1] for fundamentally synchronized oscil-

lators with small injection power.

IV. NOISE PERFORMANCE

In order to investigate the noise performance of

harmonically synchronized oscillators, sideband vectors of

small magnitude and stochastic phase are introduced as

perturbations of the carrier signals. The calculation

closely follows the pattern first introduced into oscillator
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theory by Hines [8]. The noise mechanism in the active and in the latter by

device is taken into account by equivalent sideband noise

voltage sources. These sources have to be thought of as AxiUEe-J~ Ax,l= – &3 PM. (17)

being in series to the locking voltage source vi in Fig. 1.

We are thus capable of describing both intrinsic and

injected noise in a similar way, While the latter is super-

posed on the locking signal (the sidebands are hence

located at mu t O with S2 being the distance to carrier

frequency), the former exists not only close, to the funda-

mental frequency but also close to its harmonics; the

intrinsic noise vectors must be assumed to be located at
iti~~with i=l,2,3, . . . . This is valid as the spectrum of
the intrinsic noise is white.

The parametric mixing process between the various

noise vectors is described by linear matrix algebra. The

size of the computations is considerably reduced in the

case, that the equivalent circuit of Fig. 1 is analyzed in

conjunction with a cubic nonlinearity. Superposing small

perturbation currents Ay and voltages Ax on the carrier

signals y and x means for (1) that

y + Ay =j(X + Ax), Ay <<y Ax<<x. (13)

Equation (13) can be linearized with respect to the noise

signals.

Y =Y(x)fk f’(X) =dj/dX= -1 +2ax+3x2 (14)

where ~(x) is a periodic function of time and may hence

be expanded into a Fourier series. In the case of the cubic

nonlinearity, the Fourier series is finite with coefficients

g~ = O for k > 2m + 1. The highest pair of sidebands, which
must be taken into account, is hence located at 2mu f 0.

The scheme for analyzing the equivalent circuit of Fig.

1 for the noise signals is the following. At the nonlinear

element, the noise currents at frequencies iti ~ Q with i = 1

to 2m are related to the noise voltages by a matrix

equation with g~ being the elements of the conversion

matrix. These equations are completed by Kirchhoff’s

voltage law. The upper and lower sideband voltages at the

fundamental frequency AxU and Axl can then be calcu-

lated by superposing the contributions from the various

sideband pairs of noise voltage sources. Finally, one has

to average over the stochastic phases of the noise sources.

The fundamental relations of this procedure are given in

the Appendix.
The AM noise spectrum is calculated from

+,m=(Re(& + AXI)2) (15a)

and the PM noise spectrum from

Aw+m(fk + A%)*). (15b)

The brackets denote an average over the independent

phase angles of the noise voltage sources.
AM to PM and PM to AM conversion can be calcu-

lated, when the injected noise is assumed to be either

purely AM or purely PM. In the former case, the pair of

injected sideband sources is given by

Ax,. = e ‘Jy Ax,l ~ eJ~, AM (16)

y is the common stochastic phase.

Simple expressions for the noise spectra can be given

for some special cases. If one takes only the intrinsic noise

close to the fundamental frequency into account, the

output noise is given by

4’AM=
( )

gL 2

go+gL+g*
V=l

( )

!J-O. (18)

@PM~
gL 2’

/lo+gL-g2

The second expression shows the stabilizing effect of the

synchronizing signal on the PM noise. For fi = O, the

denominator vanishes, because 1) go is O [4] and 2) n is

go – gz, as can be proven by integrating (3) by parts. The
denominator then equals the left-hand side of (5). This

gives rise to a sharp PM noise peak, which is considerably

damped even for small injected signals. The AM noise, on

the other hand, is only weakly influenced by the injected

signal. Furthermore, injected AM noise leads to

[

@AMH ‘gl+g3)(g2-gO-gL) 21(go+/2)2-d ‘
form=2 (19a)

[

@AM& (g2+g4)(g2-go-gL) 2

I(go+gL)2-g; ‘

for m=3 (19b)

and injected PM noise to

[ 1~pM= (g, -g3)(g2+gO+gL) 2

(gO+gL)2-d ‘

for m= 2 (20a)

[

~p~m (g2-&’4)(&+gO+gL) 2

1(gO+b’L)2-d ‘

for m= 3. (20b)

Equations (19) and (20) are valid for v = 1 and il~O. v is

the normalized oscillation frequency.

V. REsuLTs

Some advantageous features of frequency division by

harmonic synchronization are well known. Such a divider

behaves as a power limiter and shows power gain. Fur-

thermore, the magnitude of the stable locking range is

almost as large as that of a fundamentally synchronized

oscillator in the case of m =2. For m =3, half of this value

can be obtained. Comparing with fundamental synchroni-

zation one can state, as a rule of thumb, that 10-dB more

locking power is needed in order to attain equal locking

ranges.
A characteristic feature of harmonic synchronization is

that the locking range reaches a maximum versus the

injection power. This is due to the conversion efficiency,

which depends on the injected signal. A large drive of the

nonlinear device reduces that portion of the injected

signal, which is downconverted to the fundamental.
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Fig. 2. Intrinsic PM sidebaud noise power versus the injection level for
different noise contributions. m= 3, QL = 10, g== 0.5, K?/ti = 10-4, and

a= O.aisfor noise atuwithv=l; bisfornoise ata, kwithv=l; cis
for noise at o with Y=l.O1; dis for noise at qiti with v=l.01. i=l to
2m.

Hence the effective synchronizing signal decreases as does

the locking range. In the case of Xp 1, the approximate

formula (12a) is no longer valid. That is why (12a) shows

no maximum for Av versus ii.

The maximum locking range has been computed to

amount to 13 percent for m = 2 (a= 1), 1-dB power gain,

and – 1-dB output power compression, and to 4 percent

for m =3 (a= O), 6-dB power gain and O-dB output power

compression. The loaded Q factor Q~ had been set to

Q~ = 10. One can nevertheless state that a gain of 10 dB

should be possible. In this case, the locking range amounts

to 6 percent for m =2 (a= 1) and to 3 percent for m =3

(a= O), (Q~= 10).

The phase shift across the locking band behaves simi-

larly as for fundamental synchronization (see (8)).

tan(mcp) = KK. (21)

K is a function of the injection signal x,. The group delay

is smaller than for fundamental synchronization by a

factor of 1/m. The maximum shift at the borders of the

locking band is ~/(2m).

The dependence of the intrinsic noise on the injected

power will be discussed next. As for fundamental synchro-

nization, the PM noise is drastically reduced, if a stable

harmonic signal is injected. This is shown for m= 3 in Fig.
2. The normalized PM sideband noise powerp,~ has been

drawn versus Xi, which is proportional to the injected

power. Here and in the following the spectral density of

the intrinsic noise sources has been set to 1/3. 10-14.

Increasing Xi yields decreasing PM noise, until a mini-

mum has been reached at a relatively large Xl. If Xi is

increased beyond this point, the PM noise becomes worse.

The explanation is the same as for the existence of a

maximum of the locking range; the stabilizing effect of

the injection signal depends on the conversion efficiency

and hence on the drive of the nonlinear element.
It can be seen further from Fig. 2 that the noise compo-

nents close to the harmonics contribute about as much to

1
+-4

1

-115

dB

-1 2C

425

— \ I

.\ ‘\ I
\\

\\ j

\ ‘\
‘\\ /’

‘\\
/

/

I I I

I -t‘ \\\\ //” 1
-lo dB -5 x, --- o

Fig. 3. Intrinsic PM sideband noise power versus the injection level for
different noise contributions. m= 2, QL = 10, g== 0.5, !J/u = 10-4, and
a=o.l. aisfornoise at~withv=l: lrisfor noise ata, iuwithr=l; c

is for noise at a with v = 1.M15:d is for noise at a.ico withv = 1.005. i= 1
to 2m.
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Fig. 4. Intrinsic AM sideband noise power versus the injection level
for different noise contributions. m= 3, QL = 10, g~ = 0.5, Q/a= 10-4,

and a = O. a is for noise at u with v = 1; b is for noise at ~, iti with
V= 1; c is for noise at u with v= 1.01; d is for noise at u,iti with
v=l.01. i=] to 2m.

the PM noise as do the fundamental components alone.
(In cases b and d, noise sources at a and iu with i= 2 to

i = 2m have been taken into account.) This effect is even

more pronounced for m = 2 as shown in Fig. 3. The

normalized AM noise power pAM has been drawn versus

X, in Fig. 4. Its shape is similar to that of pPM(X,).

The output PM noise due to the PM noise of the

injection signal is shown versus Xi in Figs. 5 and 6. (The

spectral densities of the injected noises have been chosen

so that the injected AM noise powerl is – 160 dB below

the carrier and the injected PM noise power – 128 dB.

1In a l-Hz bandwidth.
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Fig. 5. PM noise power due to a PM injection signal versus the
injection level. m =3, QL = 10, gL =0.5, Q/u= 10-4, and a =0. a: v = 1.
b: ZJ=1.01.
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Fig. 6. PM noise power due to a PM injection signal versus the
injection level. m =2, QL = 10, gL = 0.5, G?/o = 10– 4, and a = 0.1 a:
V=l. b: P=l.005.

This relationship is completely different from the corre-

sponding one for fundamental synchronization, where the

PM noise at the output does not depend on the injection

power [9]. For harmonic synchronization, however, the

PM noise monotonically decreases versus Xi. Again the

explanation for this effect lies in the conversion efficiency

which decreases versus X,. Hence the PM noise which is

downconverted from around mu to u must decrease, too.

Combining the results of Figs. 2 and 5 one must suppose

that the total PM noise at the output should have a

minimum versus Xi. This effect could indeed be observed
in practice.

An unexpected result was that the PM noise is less for

v # 1 than for v = 1, i.e., it shows a maximum in the middle

of the stable locking range (see case b in Figs. 5 and 6).

This is due to a very strong PM to AM conversion, which

occurs for v # 1 at locking powers less than – 10 dB. Such

943
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Fig. 7. AM noise power due to an AM injection signal (curves a, b),
AM to PM conversion (curve c), and PM to AM conversion (curve d)
versus the injection level. m =3, Q== 10, gL =0.5, S1/o = 10–4, and
a =0. a: v= 1 and b: v= 1.01 (p~~(AM)). c: v= 1.01 (pP~(AM)). d
v= 1.01 (pA~(PM)).

an enhancement in AM noise may impair the overall

performance of the divider in practice. It has been shown

for m = 3 in Fig. 7, curve d. Also shown are the AM noise

due to AM injection and the AM to PM conversion. Both

terms increase very strongly when Xi tends to – 2.5 dB.

For injected powers, which exceed this margin, the oscilla-

tor cannot be synchronized any longer.

VI. CONCLUSIONS

A nonlinear model, which is capable of calculating

noise and transfer properties of harmonically synchro-

nized oscillators, has been developed. For the case where

the active device is described by a van der Pol type

nonlinear characteristic, analytical expressions can be de-

rived for many of the interesting quantities. The model

has been applied to both a frequency divider by a factor

of 2 and a divider by a factor 3. The results show that

harmonically synchronized oscillators differ in many

aspects of their performance from fundamentally synchro-

nized oscillators. This model is hoped to yield a useful

tool for designing harmonic frequency divider circuits.

VII. APPENDIX

The coefficients of the conversion matrix are calculated

from

One obtains:
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and

g5=f) g6=:2,?, form=3.

The matrix equation, which relates the upper and lower sideband voltages across the nonlinear device AxUi and Axli at

frequencies i; t Q with i = 1 to i = 2m to the currents AyUi and Ayli> re~ds

Ay~

AYI 1
Ay:l

AY[2

AY:2

AY13

AY:3

AY14

Ay:4

Ay,5

Ay;5

AY16

Ay:6

.

g4g3g5g2g6 g1°g00g:0gf 0
d g; d d d Ogfogoog, ogz
g5 g4 g6 g3 og20g, ogoog?o
g; & 1% Og$og; og; ogoog,
g6g5°g40g30 g20g10go 0
g;og$og$ogjog; Og?ogo

Ax;

Axl ,

Ax:l

Axlz

AX:2

AX[3

AX:3

Ax14

AX:4

AX[5

AX:5

AX16

AX:6

Ay~ and Ax~ are sideband vectors at frequency C?denoting noise in the bias circuit.

In writing down Kirchhoff’s voltage law for the phasors at the various sideband frequencies, one has to take into

account that the parallel circuit presents a finite admittance only at frequencies a f Q.
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